\(\int \cot ^p(a+3 \log (x)) \, dx\) [208]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 9, antiderivative size = 120 \[ \int \cot ^p(a+3 \log (x)) \, dx=\left (1-e^{2 i a} x^{6 i}\right )^p \left (1+e^{2 i a} x^{6 i}\right )^{-p} \left (-\frac {i \left (1+e^{2 i a} x^{6 i}\right )}{1-e^{2 i a} x^{6 i}}\right )^p x \operatorname {AppellF1}\left (-\frac {i}{6},p,-p,1-\frac {i}{6},e^{2 i a} x^{6 i},-e^{2 i a} x^{6 i}\right ) \]

[Out]

(1-exp(2*I*a)*x^(6*I))^p*(-I*(1+exp(2*I*a)*x^(6*I))/(1-exp(2*I*a)*x^(6*I)))^p*x*AppellF1(-1/6*I,p,-p,1-1/6*I,e
xp(2*I*a)*x^(6*I),-exp(2*I*a)*x^(6*I))/((1+exp(2*I*a)*x^(6*I))^p)

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.444, Rules used = {4588, 1986, 441, 440} \[ \int \cot ^p(a+3 \log (x)) \, dx=x \left (1-e^{2 i a} x^{6 i}\right )^p \left (1+e^{2 i a} x^{6 i}\right )^{-p} \left (-\frac {i \left (1+e^{2 i a} x^{6 i}\right )}{1-e^{2 i a} x^{6 i}}\right )^p \operatorname {AppellF1}\left (-\frac {i}{6},p,-p,1-\frac {i}{6},e^{2 i a} x^{6 i},-e^{2 i a} x^{6 i}\right ) \]

[In]

Int[Cot[a + 3*Log[x]]^p,x]

[Out]

((1 - E^((2*I)*a)*x^(6*I))^p*(((-I)*(1 + E^((2*I)*a)*x^(6*I)))/(1 - E^((2*I)*a)*x^(6*I)))^p*x*AppellF1[-1/6*I,
 p, -p, 1 - I/6, E^((2*I)*a)*x^(6*I), -(E^((2*I)*a)*x^(6*I))])/(1 + E^((2*I)*a)*x^(6*I))^p

Rule 440

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 441

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[a^IntPart[p]*((a + b*x^n)^F
racPart[p]/(1 + b*(x^n/a))^FracPart[p]), Int[(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n,
p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] &&  !(IntegerQ[p] || GtQ[a, 0])

Rule 1986

Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^(r_.))^(p_), x_Symbol] :> Dist[Simp
[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + b*x^n)^(p*q)*(c + d*x^n)^(p*r))], Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)
^(p*r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]

Rule 4588

Int[Cot[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Int[((-I - I*E^(2*I*a*d)*x^(2*I*b*d))/(1 - E^(2*I*a
*d)*x^(2*I*b*d)))^p, x] /; FreeQ[{a, b, d, p}, x]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {-i-i e^{2 i a} x^{6 i}}{1-e^{2 i a} x^{6 i}}\right )^p \, dx \\ & = \left (\left (1-e^{2 i a} x^{6 i}\right )^p \left (-i-i e^{2 i a} x^{6 i}\right )^{-p} \left (\frac {-i-i e^{2 i a} x^{6 i}}{1-e^{2 i a} x^{6 i}}\right )^p\right ) \int \left (1-e^{2 i a} x^{6 i}\right )^{-p} \left (-i-i e^{2 i a} x^{6 i}\right )^p \, dx \\ & = \left (\left (1-e^{2 i a} x^{6 i}\right )^p \left (\frac {-i-i e^{2 i a} x^{6 i}}{1-e^{2 i a} x^{6 i}}\right )^p \left (1+e^{2 i a} x^{6 i}\right )^{-p}\right ) \int \left (1-e^{2 i a} x^{6 i}\right )^{-p} \left (1+e^{2 i a} x^{6 i}\right )^p \, dx \\ & = \left (1-e^{2 i a} x^{6 i}\right )^p \left (1+e^{2 i a} x^{6 i}\right )^{-p} \left (-\frac {i \left (1+e^{2 i a} x^{6 i}\right )}{1-e^{2 i a} x^{6 i}}\right )^p x \operatorname {AppellF1}\left (-\frac {i}{6},p,-p,1-\frac {i}{6},e^{2 i a} x^{6 i},-e^{2 i a} x^{6 i}\right ) \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 0.40 (sec) , antiderivative size = 238, normalized size of antiderivative = 1.98 \[ \int \cot ^p(a+3 \log (x)) \, dx=\frac {(6-i) \left (\frac {i \left (1+e^{2 i a} x^{6 i}\right )}{-1+e^{2 i a} x^{6 i}}\right )^p x \operatorname {AppellF1}\left (-\frac {i}{6},p,-p,1-\frac {i}{6},e^{2 i a} x^{6 i},-e^{2 i a} x^{6 i}\right )}{(6-i) \operatorname {AppellF1}\left (-\frac {i}{6},p,-p,1-\frac {i}{6},e^{2 i a} x^{6 i},-e^{2 i a} x^{6 i}\right )+6 e^{2 i a} p x^{6 i} \left (\operatorname {AppellF1}\left (1-\frac {i}{6},p,1-p,2-\frac {i}{6},e^{2 i a} x^{6 i},-e^{2 i a} x^{6 i}\right )+\operatorname {AppellF1}\left (1-\frac {i}{6},1+p,-p,2-\frac {i}{6},e^{2 i a} x^{6 i},-e^{2 i a} x^{6 i}\right )\right )} \]

[In]

Integrate[Cot[a + 3*Log[x]]^p,x]

[Out]

((6 - I)*((I*(1 + E^((2*I)*a)*x^(6*I)))/(-1 + E^((2*I)*a)*x^(6*I)))^p*x*AppellF1[-1/6*I, p, -p, 1 - I/6, E^((2
*I)*a)*x^(6*I), -(E^((2*I)*a)*x^(6*I))])/((6 - I)*AppellF1[-1/6*I, p, -p, 1 - I/6, E^((2*I)*a)*x^(6*I), -(E^((
2*I)*a)*x^(6*I))] + 6*E^((2*I)*a)*p*x^(6*I)*(AppellF1[1 - I/6, p, 1 - p, 2 - I/6, E^((2*I)*a)*x^(6*I), -(E^((2
*I)*a)*x^(6*I))] + AppellF1[1 - I/6, 1 + p, -p, 2 - I/6, E^((2*I)*a)*x^(6*I), -(E^((2*I)*a)*x^(6*I))]))

Maple [F]

\[\int \cot \left (a +3 \ln \left (x \right )\right )^{p}d x\]

[In]

int(cot(a+3*ln(x))^p,x)

[Out]

int(cot(a+3*ln(x))^p,x)

Fricas [F]

\[ \int \cot ^p(a+3 \log (x)) \, dx=\int { \cot \left (a + 3 \, \log \left (x\right )\right )^{p} \,d x } \]

[In]

integrate(cot(a+3*log(x))^p,x, algorithm="fricas")

[Out]

integral(cot(a + 3*log(x))^p, x)

Sympy [F]

\[ \int \cot ^p(a+3 \log (x)) \, dx=\int \cot ^{p}{\left (a + 3 \log {\left (x \right )} \right )}\, dx \]

[In]

integrate(cot(a+3*ln(x))**p,x)

[Out]

Integral(cot(a + 3*log(x))**p, x)

Maxima [F]

\[ \int \cot ^p(a+3 \log (x)) \, dx=\int { \cot \left (a + 3 \, \log \left (x\right )\right )^{p} \,d x } \]

[In]

integrate(cot(a+3*log(x))^p,x, algorithm="maxima")

[Out]

integrate(cot(a + 3*log(x))^p, x)

Giac [F]

\[ \int \cot ^p(a+3 \log (x)) \, dx=\int { \cot \left (a + 3 \, \log \left (x\right )\right )^{p} \,d x } \]

[In]

integrate(cot(a+3*log(x))^p,x, algorithm="giac")

[Out]

integrate(cot(a + 3*log(x))^p, x)

Mupad [F(-1)]

Timed out. \[ \int \cot ^p(a+3 \log (x)) \, dx=\int {\mathrm {cot}\left (a+3\,\ln \left (x\right )\right )}^p \,d x \]

[In]

int(cot(a + 3*log(x))^p,x)

[Out]

int(cot(a + 3*log(x))^p, x)